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With increased capacity of FPGAs and readily available off-the-shelf prototyping boards 
sporting multiple FPGAs, it has become feasible and affordable to prototype a multi- 
million gate ASIC by mapping the original RTL code to several FPGAs on a board. 
There are many off-the-shelf boards available with the right IO interfaces for verifying 
the functionality of an ASIC. Also, most common high speed IO standards are available 
on today’s FPGAs. Using an FPGA prototype, you can exercise more product function in 
hours than what you can in days using simulation and a lot of stimulus does not even 
have to be developed as you can use real hardware to produce real time stimulus. One 
cannot afford to re-spin and ASIC due to a functional bug not caught early on due to lack 
of proper verification as the ASIC mask costs are exorbitantly high. Since actual software 
can be run on a prototype hardware system, overall system development cost can be 
reduced significantly by co-developing hardware and software. 
 
Most ASICs are too large to fit on a signle FPGA therefore the challenge is partitioning 
the ASIC design into several FPGAs. Luckily there are EDA tools available to auto 
partition. In this article I am going to discuss the challenges faced when partitioning and 
mapping an ASIC RTL to multiple FPGAs and provide some solutions. 
 
 
Gated clock conversion: 
 
One of the major challenges in targeting an ASIC RTL to an FPGA is the prevalent use 
of gated clocks in most ASIC designs. FPGAs have pre-synthesized clock trees for 
providing synchronized clock to the finite number of flip-flops and memories across the 
chip. When additional logic is applied to the clock signal in the RTL, the logic translates 
into physical gates outside the pre-synthesized balanced clock tree, through which the 
clock signal passes, thus causing large clock skews between registers of the FPGA. There 
are many forms of clock gating. We are going to discuss many possible sources of clock 
gating and how RTL changes can be made to eliminate clock gating without changing the 
functionality of the original design. 
 
The simplest and most common form of clock gating is when a logical “AND” function 
is used to selectively disable the clock by a control signal. This is commonly employed in 
ASIC designs for saving dynamic power consumption by selectively stopping the high 
capacitance clock tree from switching. 
 
gated_clock = CLK && Enable 
 
As shown in Figure 1, the gated_clock signal acts as the source clock, CLK, when 
enable is “1” but is forced to “0” when enable is “0”. When clock of a flip-flop is “0” it 



retains the last captured data. This function can also be implemented by feeding the CLK 
signal directly to the flip-flop’s clock pin and using the enable control signal to 
selectively latch the input data in the flip-flop instead. So when the Enable is ‘0’ output 
of the flip-flop is fed back into the input thus retaining its state. Most flip-flops have an 
enable pin, En, which is implemented by using a multiplexer selecting between input 
data and output of the flip-flop as shown in figure 1. Even if the flip-flop does not have 
an En pin, it can be implemented by inserting a multiplexer in the data input path of the 
flip-flop. 
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Figure 1. Conversion of combinatorial gated clock 

 
 
 
 
 
 
Another common type of clock gating in ASICs is due to multiplexing of two clock 
signals of different frequencies as shown in Figure 2. The output of the multiplexed 
clocks, gated_clock, then clocks a range of flip-flops. If the two source clocks are 
harmonically related then the fast clock can be used to clock the flip-flops directly, while 
the slower clock can be used to selectively enable the flip-flops’ data input to avoid clock 
gating of such type. If the flip-flops are enabled every two cycles, it is essentially same as 
their clock being half the frequency.  
 
This scenario is shown in figure 2 where there are two inputs, CLK, and CLKdiv2 of the 
multiplexer. CLKdiv2 is the half frequency clock derived from the CLK clock. The SEL 



signal is used to switch the clock from one source to another. Since the multiplexer is in 
the clock path it causes extra skew in the FPGA implementation.  
 
Figure 2 also shows how to avoid this type of clock gating by a different implementation 
when the flip-flops are substituted by flip-flops with enable pins and the enable control is 
driven by the divided clock while the CLK clock is clocking the flip-flops directly. There 
is a multiplexer in the enable control path which keeps the flip-flops enabled all the time 
when the SEL is ‘1’ and  every other clock cycle when SEL is ‘0’, essentially switching 
the clock frequency of the flip-flops.  
 
Figure 3 shows the timing diagram to verify that both implementations produce the same 
result, one with gated clock and the other with non-gated clock. The timing diagram 
shows that CLKdiv2inv signal (inverted CLKdiv2 clock) becomes a ‘1’ at every second 
positive edge of CLK, which is equivalent to latching data and every positive clock edge 
of CLKdiv2. The inverted divided clock has been chosen to enable the flip-flops instead 
of the divided clock itself to match the first capture edge with the original implementation. 
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Figure 2. Conversion of sequential gated clock. 
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Figure 3. Timing diagram of converted sequential gated-clock 
 

 
 
 
If the two clocks are totally unrelated then it is not possible to use the fast clock as the 
base clock and qualify the data by the slow clock as they are asynchronous to each other. 
In such a case, if the total number of flip-flops is not very high, flip-flops can be 
duplicated and clocked directly by each un-related clock separately. Outputs of these flip-
flops can then be multiplexed instead of multiplexing the clock sources. 
 
Another common scenario is when exclusive “OR” logic is used to selectively invert the 
source clock. This kind of clock gating can be removed by having a duplicate set of flip-
flops, one set clocked by the true clock and other with the invert clock. Outputs of the 
two sets can be selected through a multiplexer. 
 
There are other ways of dividing clock frequency in an FPGA by utilizing the built in 
PLLs without causing any clock skew. 
 
Gate count estimation. 
 
It is very difficult to estimate during partitioning how much RTL code is going to fit into 
an FPGA comfortably. Not only gate count estimate is required but routing area also 
needs to be figured in. An automatic synthesis tool is a must at this stage to get a quick 
estimate of the fitting as different partitions are experimented with. Off course IO pin 
count of each FPGA and number of available traces on the board have to be looked at in 
conjunction with the logic fitting so it is an iterative process.  
 
Instantiated memories and other RTL changes 
 



Internal memories in ASIC RTL are instantiated often times with addition BIST logic. 
There are other instantiated library components in most ASICs which will not be 
understood by FPGA P&R tools. Due to this either minor RTL changes have to be made 
to infer logic rather than instantiating or special library has to be included in the project 
which describes those instantiated blocks. At times blocks of RTL are commented out for 
the logic that is not relevant to the prototype, like a BIST controller. Commenting out 
chunks of logic from RTL leaves un-driven inputs hanging in the rest of the RTL which 
have to be tied to constants. 
 
 
Limited number of FPGA IO pins and board traces. 
 
IO pins of each FPGA are limited in number. The total number of board traces in-
between FPGAs are also limited and predefined for an off-the-shelf board. So 
partitioning is a three step iterative process. Step one is to divide the logic into how ever 
many FPGAs you have on your prototype board such the logic fits in each FPGA. Second 
step is the adjustment of logic such that IO signals of each FPGA, due to inter-FPGA 
interconnects, do not exceed the total IO pin count for that FPGA. Third step is 
adjustment of logic so that total number of board traces between FPGAs should be 
enough to accommodate all the inter-FPGA signals. Since step one has direct impact on 
step two and three, it becomes an iterative process to meet all three requirements by trial 
and error, either manually or through a tool. The following two sections describe ways to 
reduce the total number of inter-FPGA signals for successfully completing step two and 
step three. 
 
Logic replication 
Since the goal is to minimize the use of IOs for each FPGA and inter-FPGA signals, 
sometimes it is very useful to simply replicate chunks of logic in each FPGA thus paying 
an area penalty but reducing the number of inter-FPGA signals. For example, in Figure 3, 
a control block, CTL, in FPGA1 is generating a 32 bit address, ADDR[31:0], for a 
memory in FPGA1 and also a memory in FPGA2. There are only 3 input signals going 
into the control block. By replicating the control block, CTL, in FPGA2, we can avoid 
the ADDR[31:0] bus connection between FPGA1 and FPGA2 and add 3 signals instead, 
IN_CTL[2:0], between FPGA1 and FPGA2. There is a net reduction of 29 signals 
between the two FPGAs. Off course, replication of logic utilizes more area but if the 
limitation is IO count or the number of traces available between two FPGAs then it helps 
in achieving a successful partition.  
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Figure 4. By duplicating the CTL block in FPGA2, instead of 32 
ADDR[31:0] signals, only 3 IN_CTL[2:0] signals are going from 
FPGA1 to FPGA2 

 
 
 
 
 
 
 
 
 
 
 
IO multiplexing. 
Due to limited number of traces and IO pins, inter-FPGA signals can be multiplexed over 
time in one system clock cycle, through the same IO pin and trace. For example as shown 
in figure 5, four output signals A, B, C, and D are multiplexed and driven on the same 
output pin in FPGA1. A clock, X4CLK, which is four times faster than the system clock, 
is used to selectively drive the four signals in separate time slots of one system clock 
cycle, and then de-multiplexed on the FPGA2 side in the same fashion. As far as the 
system clock is concerned, all four signals passed through during one clock cycle. The 



overhead of sharing the same pin for more than one signal is the multiplexing and de-
multiplexing logic and the control logic to synchronize both sides. Also, a fast clock is 
needed to ensure that all the signals reach the destination in one system clock cycle. 
Multiplexing signals in this fashion also has an adverse affect on the maximum frequency 
a prototype system can run at as each signal’s setup time requirement is tightened by a 
factor of however many signals are multiplexed.  
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Figure 5. IO multiplexing to reduce inter-FPGA signals 
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System frequency and design constraints. 
 
System frequency often hinges on the multiplexed inter-FPGA signals as they have the 
tightest setup time requirements due to the fast clock and high board trace delays. Inter-
FPGA signals are generally the slowest timing paths in a prototype and determine the 
highest system clock frequency of the prototype. The original ASIC usually runs at a 
higher clock frequency than the FPGA implementation, therefore most synthesis and 
timing constraints for an ASIC RTL have to be re-specified for the FPGAs.  
 
 
Prototyping and verifying an ASIC with FPGA implementation provides high level of 
confidence in the functionality of the design before masks are generated and reduces the 
total cost of ownership considerably. There are some inherent differences in the way RTL 
is developed for ASICs and FPGAs and it is often difficult to partition the RTL design 
with limited IO pins of each FPGA and limited number of board traces. With some minor 
modifications to the RTL code such as gated-clock conversion, possibly automatically 
using EDA tools, and partitioning the design keeping the inter-FPGA signals to a 



minimum by multiplexing these signals and trying different partitions, most ASICs can 
be prototyped using FPGAs quickly and affordably. 
 
 
 
 
 
 
 


